Pengolahan minyak bumi dan hasil pengolahan menjadi LPG, LNG, CNG

Pengolahan Minyak Mentah- Minyak mentah merupakan campuran yang sangat kompleks maka perlu diolah lebih lanjut untuk dapat dimanfaatkan. Gambar 9.5merupakan tempat pengolahan minyak mentah menjadi fraksi-fraksi minyak bumi, seperti yang ada di SPBU dilakukan melalui penyulingan (distillation) bertingkat.

1. Penyulingan Minyak Bumi

Minyak yang ditambang masih berupa minyak mentah yang belum dapat digunakan. Untuk dapat dimanfaatkan sebagai bahan bakar dan aplikasi lain, minyak mentah perlu diolah di kilang-kilang minyak melalui penyulingan bertingkat dengan teknik fraksionasi. Prinsip dasar penyulingan bertingkat adalah perbedaan titik didih di antara fraksi-fraksi minyak mentah. Jika selisih titik didih tidak berbeda jauh maka penyulingan tidak dapat diterapkan (perhatikan Tabel 9.1).

Penyulingan minyak bumi pada malam hari

Gambar 9.5Penyulingan minyak bumi pada malam hari

Hidrokarbon yang memiliki titik didih paling rendah akan terpisah lebih dulu, disusul dengan hidrokarbon yang memiliki titik didih lebih tinggi. Jadi, secara bertahap, senyawa hidrokarbon dapat dipisahkan dari campuran minyak mentah.

Tabel 9.1 Proses Penyulingan Minyak Mentah Menjadi Fraksi-Fraksi Minyak Bumi

Distilat Hasil Jumlah Atom C Aplikasi
Gas

Gasolin

Kerosin

Diesel

Pelumas

Residu

1 – 45 – 1011 – 1516 – 2021 – 40 

> 50

Bahan bakar gas, plastik,bahan kimiaBahan bakar cair (bensin), Bahan kimiaBahan bakar pesawat, bahan bakar kompor, bahan kimiaBahan bakar diesel, bahan kimiaPelumas, lilin, malam (wax

Aspal, zat anti bocor(waterproof)

Fraksi minyak mentah yang pertama keluar dari penyulingan adalah senyawa hidrokarbon dengan massa molekul rendah, kurang dari 70 sma. Fraksi ini dikemas dalam tabung bertekanan sampai mencair. Hasil pengolahan pada fraksi ini dikenal dengan LPG (liquid petroleum gas). Setelah semua fraksi teruapkan, fraksi berikutnya yang keluar adalah fraksi gasolin. Suhu yang diterapkan untuk mengeluarkan fraksi ini berkisar antara 40 – 200°C. Pada suhu tersebut, hidrokarbon mulai dari pentana sampai oktana dikeluarkan dari penyulingan (lihat titik didih pentana sampai oktana). Pada suhu kamar, wujud dari fraksi ini adalah cairan tak berwarna hingga agak kuning dan mudah menguap. Demikian seterusnya hingga semua fraksi dapat dipisahkan secara bertahap berdasarkan perbedaan titik didihnya. Hasil fraksionasi itu menyisakan residu yang disebut aspal berwarna hitam pekat.

2. Perengkahan Minyak Bumi

Untuk memenuhi kebutuhan produk tertentu, hidrokarbon yang berantai panjang dapat dipecah menjadi lebih pendek melalui proses perengkahan (cracking). Sebaliknya, hidrokarbon rantai pendek dapat digabungkan menjadi rantai yang lebih panjang (reforming). Untuk meningkatkan fraksi bensin dapat dilakukan dengan cara memecah hidrokarbon rantai panjang menjadi fraksi (C5–C9) melalui perengkahan termal. Proses perengkahan ini dilakukan pada suhu 500°C dan tekanan 25 atm. Hidrokarbon jenuh rantai lurus seperti kerosin (C12H26) dapat direngkahkan ke dalam dua buah fragmen yang lebih pendek menjadi senyawa heksana (C6H14) dan heksena (C6H12).
C12H26(l)→C6H14(l) + C6H12(l)

Keberadaan heksena (alkena) dari hasil perengkahan termal dapat meningkatkan bilangan oktan sebesar 10 satuan. Akan tetapi, produk dari proses perengkahan ini umumnya kurang stabil jika disimpan dalam kurun waktu lama. Oleh karena produk perengkahan termal umumnya kurang stabil maka teknik perengkahan termal diganti dengan perengkahan katalitikmenggunakan katalis yang dilakukan pada suhu dan tekanan tinggi. Perengkahan katalitik, misalnya alkana rantai panjang direaksikan dengan campuran silikon (SiO2) dan alumina (Al2O3), ditambah gas hidrogen atau katalis tertentu. Dalam reforming, molekul-molekul kecil digabungkan menjadi molekul-molekul yang lebih besar. Hal ini dilakukan guna meningkatkan produk bensin. Misalnya, butana dan propana direaksikan membentuk heptana. Persamaan reaksinya:
C4H10(g) + C3H8(g)→C7H16(l) + H2(g)

3. Bilangan Oktan Minyak Bumi

Fraksi terpenting dari minyak bumi adalah bensin. Bensin digunakan sebagai bahan bakar kendaraan bermotor (perhatikan Gambar 9.6). Sekitar 10% produk distilasi minyak mentah adalah fraksi bensin dengan rantai tidak bercabang. Dalam mesin bertekanan tinggi, pembakaran bensin rantai lurus tidak merata dan menimbulkan gelombang kejut yang menyebabkan terjadi ketukan pada mesin. Jika ketukan ini dibiarkan dapat mengakibatkan mesin cepat panas dan mudah rusak. Ukuran pemerataan pembakaran bensin agar tidak terjadi ketukan digunakan istilah bilangan oktan. Bilangan oktan adalah bilanganperbandingan antara nilai ketukan bensin terhadap nilai ketukan dari campuranhidrokarbon standar. Campuran hidrokarbon yang dipakai sebagai standar bilangan oktan adalah n-heptana dan 2,2,4-trimetilpentana (isooktana). Bilangan oktan untuk campuran 87% isooktana dan 13% n-heptana ditetapkan sebesar 87 satuan. Terdapat tiga metode pengukuran bilangan oktan, yaitu:

a. pengukuran pada kecepatan dan suhu tinggi, hasilnya dinyatakan sebagai bilangan oktan mesin;

b. pengukuran pada kecepatan sedang, hasilnya dinamakan bilangan oktan penelitian;

c. pengukuran hidrokarbon murni, dinamakan bilangan oktan road index.

Beberapa hidrokarbon murni ditunjukkan pada Tabel 9.2.

Tabel 9.2 Bilangan Oktan Hidrokarbon

Hidrokarbon Bilangan Oktan Road Indeks
n-heptana 0
2-metilheptana 23
n-heksana 25
2-metilheksana 44
1-heptena 60
n-pentana 62
1-pentena 84
1-butena 91
Sikloheksana 97
2,2,4-trimetil pentana 100

Makin tinggi nilai bilangan oktan, daya tahan terhadap ketukan makin kuat (tidak terjadi ketukan). Ini dimiliki oleh 2,2,4-trimetilpentana (isooktana), sedangkan n-heptana memiliki ketukan tertinggi. Oleh karena 2,2,4-trimetilpentana memiliki bilangan oktan tertinggi (100) dan n-heptana terendah (0) maka campuran kedua senyawa tersebut dijadikan standar untuk mengukur bilangan oktan. Untuk memperoleh bilangan oktan tertinggi, selain berdasarkan komposisi campuran yang dioptimalkan juga ditambah zat aditif, seperti tetraetillead (TEL) atau Pb(C2H5)4. Penambahan 6 mL TEL ke dalam satu galon bensin dapat meningkatkan bilangan oktan 15–20 satuan. Bensin yang telah ditambah TEL dengan bilangan oktan 80 disebut bensin premium. Metode lain untuk meningkatkan bilangan oktan adalah termal reforming. Teknik ini dipakai untuk mengubah alkana rantai lurus menjadi alkana bercabang dan sikloalkana. Teknik ini dilakukan pada suhu tinggi (500–600°C) dan tekanan tinggi (25–50 atm).

4. Penggunaan Minyak Bumi Sebagai Bahan Bakar

Sebagian besar produk minyak bumi digunakan sebagai bahan bakar, baik bahan bakar di rumah tangga, industri maupun bahan bakar kendaraan. Bahan bakar minyak yang digunakan di rumah tangga adalah minyak tanah dan gas elpiji. Minyak tanah berasal dari fraksi kerosin, sedangkan gas elpiji berasal dari fraksi gas. Selain digunakan sebagai bahan bakar kompor, minyak bumi juga digunakan sebagai bahan bakar kendaraan bermotor. Produk-produk minyak bumi yang digunakan sebagai bahan bakar kendaraan bermotor adalah bensin dan minyak solar. Bensin mengandung sekitar ratusan jenis hidrokarbon dengan jumlah rantai karbon antara 5 hingga 10. Minyak solar digunakan sebagai bahan bakar untuk kendaraan bermesin diesel. Ada tiga jenis bensin yang beredar di pasaran, yaitu premium, pertamax, dan pertamax plus. Apakah perbedaan antara premium dan pertamax? Kedua jenis bahan bakar ini dibedakan dari bilangan oktannya. Bilangan oktan menyatakan jumlah ketukan pada mesin yang dihasilkan bensin. Semakin besar nilai bilangan oktannya, semakin sedikit jumlah ketukannya. Artinya, semakin besar bilangan oktan, semakin baik kualitas bensin. Nilai bilangan oktan dapat dihitung menggunakan rumus berikut. Bilangan Oktan = (% isooktana × 100) + (% n-heptana × 100) Pertamax memiliki bilangan oktan yang lebih besar dari premium. Bilangan oktan pertamax adalah 94, sedangkan premium hanya 88. Bilangan oktan dapat ditingkatkan melalui berbagai cara, di antaranya dengan menambahkan TEL (tetra ethyl lead), MTBE (methyl tertier buthyl ether), dan HOMC (high octane mogas component). Penambahan zat-zat ini dapat meningkatkan bilangan oktan antara 3–5 poin.

5. Penggunaan Minyak Bumi Sebagai Bahan Baku Industri Petrokimia

Selain sebagai bahan bakar, minyak bumi dapat juga dimanfaatkan sebagai bahan dasar pembuatan produk-produk lainnya. Misalnya, plastik, bahan peledak, detergen, nilon, urea, dan metanol. Produk-produk dari minyak bumi tersebut dinamakan petrokimia. Suatu industri petrokimia dapat terbuat dari senyawa alkena (olefin), benzena dan turunannya (aromatik), dan gas sintetis. Bahan baku untuk industri petrokimia ini dihasilkan dari fraksi-fraksi hasil pengolahan minyak bumi. Untuk lebih jelasnya, amatilah tabel berikut.

Tabel 7.2 Bahan Baku dan Produk yang Dihasilkan Industri Petrokimia

Bahan Baku Petrokimia Contoh Asal Fraksi Minyak Bumi Produk yang Dihasilkan
Senyawa alkena Etena Fraksi gas Polietena, etanol, polivinilklorida
Propilena Fraksi gas Polipropilena
2-metil propilena Fraksi gas MTBE
Senyawa benzena dan turunannya (aromatik) Benzena Fraksi nafta Detergen, bahan peledak
Gas sintetis Metana Fraksi gas Metanol, urea

6. Dampak Pembakaran Produk Minyak Bumi

Pembakaran bahan bakar minyak dapat berlangsung dua cara yaitu pembakaran sempurna dan tidak sempurna. Pembakaran sempurna menghasilkan energi yang cukup besar dibandingkan pembakaran tidak sempurna. Tetapi gas CO2 yang dihasilkan dapat menyebabkan terjadinyagreenhouse effect (efek rumah kaca). Reaksi pembakaran sempurna:

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) + Energi

Gas CO2 merupakan gas tak berwarna, tak berbau, mudah larut dalam air, meneruskan sinar matahari gelombang pendek tapi menahan pantulan energi matahari gelombang panjang (sinar inframerah). Jika jumlahnya melebihi ambang batas (lebih dari 330 bpj), maka akan menyebabkan sesak napas dan membentuk “selubung” di atmosfer. Gas CO2 mempunyai kemampuan untuk menahan energi matahari gelombang panjang sehingga panas tidak dapat dilepaskan ke ruang angkasa. Peristiwa terjebaknya sinar matahari oleh gas CO2 inilah yang disebut efek rumah kaca. Akibatnya suhu bumi menjadi naik atau lebih dikenal dengan istilah pemanasan global. Coba bayangkan jika suhu di seluruh permukaan bumi ini naik, apa yang terjadi? Bukankah es di kedua kutub bumi akan mencair? Dapatkan membayangkan apa dampak selanjutnya?

Pembakaran tidak sempurna dari bahan bakar minyak akan menghasilkan jelaga yang dapat mengotori alat-alat seperti perkakas rumah tangga, mesin, knalpot, dan lain-lain. Sehingga mempercepat kerusakan pada alat-alat tersebut. Selain itu juga menghasilkan gas CO yang dapat menyebabkan keracunan. Reaksi pembakaran tak sempurna:

2 CH4(g) + 3 O2(g) → 2 CO(g) + 4 H2O(g) + Energi

Gas CO merupakan gas tak berwarna, tak berbau, tak berasa, dan sukar larut dalam air. Gas CO mempunyai daya ikat yang lebih tinggi dibanding gas oksigen terhadap hemoglobin, sehingga jika terhirup manusia menyebabkan dalam darah lebih banyak mengandung CO daripada oksigen. Gejala yang timbul jika keracunan gas CO adalah sesak napas, daya ingat berkurang, ketajaman penglihatan menurun, dan lelah jantung. Tubuh akan kekurangan suplai oksigen, akibatnya badan lemas, pingsan, bahkan dapat menyebabkan kematian. Reaksi:

CO(g) + Hb(aq) → HbCO(aq)

Pembakaran bahan bakar minyak juga dapat menghasilkan zat polutan lain seperti: oksida belerang (SO2 dan SO3), oksida nitrogen (NO dan NO2), dan partikel-partikel debu. Gas-gas tersebut jika masuk di udara dapat menyebabkan terjadinya hujan asam. Gas SO2 merupakan gas tak berwarna tetapi berbau sangat menyengat dan larut dalam air. Gas CO2 dapat menyesakkan napas, memedihkan mata, dan mematikan daun karena merupakan racun bagi klorofil. Gas SO2 dan SO3 di udara lembap dapat bereaksi dengan uap air membentuk asam. Reaksinya:

SO2(g) + H2O(l) → H2SO3(aq)

Bereaksi dengan O2 membentuk SO3 kemudian bereaksi dengan uap air membentuk asam sulfat. Reaksinya:

2 SO2(g) + O2(g) → 2 SO3(g)

SO3(g) + H2O(l) → H2SO4(aq)

Asam sulfat di udara lembap mudah larut dalam air hujan sehingga air hujan bersifat asam, atau dikenal dengan hujan asam. Hujan asam dapat menyebabkan tumbuhan dan hewan yang tidak tahan hidup dalam suasana asam akan mati, dan perabotan yang berasal dari logam terkorosi. Selain gas SO2 dan SO3, gas NO dan NO2 juga dapat menyebabkan hujan asam. Gas NO merupakan gas yang tak berwarna tetapi beracun. Gas NO dapat bereaksi dengan O2 menghasilkan gas NO2. Reaksinya:

2 NO(g) + O2(g) → 2 NO2(g)

Gas NO2 berwarna merah cokelat, berbau menyengat, mudah larut dalam air, dan beracun. Gas NO2dapat menyebabkan kanker karena bersifat karsinogenik. Gas-gas tersebut juga mempunyai potensi menjadi gas rumah kaca yang dapat menyebabkan terjadinya efek rumah kaca. Gas NO dan NO2 juga menjadi katalis pada penguraian ozon di stratosfer. Mengingat dampak yang ditimbulkan dan terbatasnya sumber tambang minyak di dunia ini, maka mulai sekarang dicari energi alternatif lain seperti:

  1. licol /batu bara yang dibersihkan (sumber Buletin Khusus–Warta untuk Warga Agustus 2006);
  2. biodiesel dari minyak jarak (sumber Yunior–Suara Merdeka 1 Oktober 2006);
  3. biodiesel (etanol dari tebu, minyak jagung, minyak kelapa sawit);
  4. biogas dari kompos/kotoran hewan;
  5. tenaga nuklir;
  6. tenaga panas bumi /geothermal;
  7. tenaga air terjun;
  8. tenaga gelombang air laut;
  9. tenaga angin;
  10. tenaga surya.
LPG
Bahan Bakar Gas Cair, yang secara umum, biasa kita sebut dengan ELPIJI ( LPG ), kita tentu sering mendengar dan akrab sehari-hari dengan kehidupan kita, terutama bagi ibu-ibu rumah tangga, namun apakah ELPIJI itu.
ELPIJI diperkenalkan Pertamina sejak tahun 1968. Tujuan Pertamina memasarkan ELPIJI adalah untuk meningkatkan pemanfaatan hasil produk Minyak Bumi, bentuk nya juga cair, namun perbedaan terbesar nya dari LNG adalah, heating valuenya yang lebih besar. selain juga mengurangi permintaan dari kalangan ibu rumah tangga akan Minyak Tanah, ELPIJI sendiri merupakan peng-Indonesia-an ucapan LPG (dibaca elpiji) atau LIQUEFIED PETROLIUM GAS. Pertamina menjadikan LPG sebagai merk dagang. ELPIJI adalah Bahan Bakar yang ramah terhadap lingkungan. Dikalangan Ibu rumah tangga dan pengusaha restaurant, pengguna ELPIJI menjamin dapur yang tetap resik dan bersih. Selain itu bila dibandingkan dengan Minyak Tanah atau Kayu Bakar, daya pemanasan ELPIJI lebih tinggi sehingga memasak lebih cepat matang dan tentu lebih cepat dihidangkan.
ELPIJI merupakan campuran dari berbagai unsur Hydrocarbon yang berasal dari penyulingan Minyak Mentah dan berbentuk Gas. Dengan menambah tekanan dan menurunkan suhunya, gas berubah menjadi cair, sehingga dapat disebut sebagai Bahan Bakar Gas Cair. Komponennya didominasi Propana ( C3H8 ) dan Butana (C4H10). ELPIJI juga mengandung Hydrocarbon ringan lain dalam jumlah kecil, misalnya Etana (C4H6) dan Pentana (C5H12). Dalam kondisi Atmosferis , ELPIJI berupa gas dan dapat dicairkan pada tekanan diatas 5kg/cm2. Volume ELPIJI dalam bentuk cair lebih kecil dibandingkan dalam bentuk gas untuk berat yang sama. Karena itu elpiji dipasarkan dalam bentuk cair. Sifat lain ELPIJI lebih berat dibanding udara, karena Butana dalam bentuk Gas mempunyai Berat Jenis dua kali Berat Jenis udara.
LPG banyak dipakai sebagai bahan bakar pengganti minyak tanah di rumah tangga, namun di luar negeri LPG sudah banyak kegunaannya, salah satunya sebagai bahan bakar mobil.
LNG
LNG

LNG adalah gas alam yang dicairkan, yang komposisi kimia terbanyaknya adalah Methana, lalu sedikit Ethana, Propana, Butana dan sedikit sekali pentana dan nitrogen. LNG biasanya di pakai di Industri sebagai bahan bakar. LNG adalah kepanjangan dari Liquefied Natural Gas (Gas Alam Cair). LNG adalah Gas Alam yang didinginkan lalu di kondensasikan menjadi liquid (cair). Kandungan utama dari LNG adalah methane dengan sedikit ethana, propane, Iso-butana, normal-butana, iso pentana +, serta kandungan – kandungan H2S yang beragam. Pada umumnya LNG disimpan dengan temperatur yang sangat rendah yaitu –150°C dengan tekanan 17 bar.g.
Perbedaan LNG (Liquified Natural Gas) dengan LPG (Liquified Petroleum Gas). LNG adalah Gas Metana (C1) yang dicairkan, sedangkan LPG adalah Gas Propana ( C3) atau Butana (C4) yang dicairkan.
Apa saja hasil dari LPG, Bahan Bakar Gas ELPIJI untuk kebutuhan Rumah Tangga, Industri dan Komersial yaitu Bahan Bakar Gas ELPIJI campuran Propana dan Butana selanjutnya disebut ELPIJI CAMPURAN. LPG ini mempunyai Vapour Pressure pada 100F sebesar 120 psig, dengan komposisi : % Vol C2 maksimum 0.2, % Vol C3 & C4 minimum 97.5 dan % Vol C5+ (C5 & Heavier) maksimum 2.0.
Sedangkan Bahan Bakar Gas LPG untuk kebutuhan khusus dan Komersial, yaitu Bahan Bakar Gas ELPIJI Propana, selanjutnya disebut ELPIJI PROPANA. LPG ini mempunyai vapour pressure pada 100 F sebesar 210 psig, dengan komposisi: % vol C3 total minimum 95, % vol C4 (C4 & heavier) maksimum 2.5.
Bahan Bakar Gas LPG untuk kebutuhan komersial yaitu Bahan Bakar Gas ELPIJI Butana, selanjutnya disebut LPG BUTANA. LPG ini mempunyai vapour pressure pada 100° F sebesar 70 psig, dengan komposisi: % Vol C4 minimum 97.5, % Vol C5 maksimum 2.5 dan % Vol C6+ (C6 & Heavier) NIL.
Sedangkan hasil dari LNG antara lain :* LNG : Liquified Natural Gas ( mayoritas Methana – C1 )
* LPG : Liquified Petroleum Gas ( umumnya Butana – C4 )
* CNG : Compressed Natural Gas ( umumnya Ethana-Propana-Butana C2-C3-C4 )
* Light Naphtha : Naphtha ringan ( umumnya berkisar antara C5 – C8 ), Condensible Gas
* Heavy Naphtha : Naphtha berat ( berkisar C8 – C13 ), bahan baku bensin
* HOMC : High Octane Mogas Component ( minyak pencampur bensin agar oktane numbernya tinggi, umumnya kracked naphtha )
* Kerosene : Minyak Tanah ( berkisar C15-C18 )
* Avtur : Aviation Turbine ( bahan bakar kerosene untuk turbin-gas pesawat terbang )
* Avigas : Aviation Gasoline ( bahan bakar bensin untuk pesawat terbang bermotor bakar )
* HSD : High Speed Diesel ( bahan bakar solar untuk mesin diesel putaran tinggi, terutama kendaraan transport dan mesin-mesin kecil )
* MFO : Marine Fuel Oil ( bahan bakar diesel putaran menengah terutama pada diesel kapal atau diesel berukuran besar )
* IFO : Industrial Fuel Oil ( minyak bakar ), sangat kental pada ambient temperatur, cocok untuk pemanas di eropa dan bahan bakar heater, mempunyai kalor pembakaran yang tinggi, sehingga volume pembakaran spesifiknya tinggi.
   CNG
Gas alam terkompresi (Compressed natural gas, CNG) adalah alternatif bahan bakar selain bensin atau solar. Di Indonesia, kita mengenal CNG sebagai bahan bakar gas (BBG). Bahan bakar ini dianggap lebih ‘bersih’ bila dibandingkan dengan dua bahan bakar minyak karena emisi gas buangnya yang ramah lingkungan. CNG dibuat dengan melakukan kompresi metana (CH4) yang diekstrak dari gas alam. CNG disimpan dan didistribusikan dalam bejana tekan, biasanya berbentuk silinder.
Argentina dan Brazil di Amerika Latin adalah dua negara dengan jumlah kendaraan pengguna CNG terbesar. Konversi ke CNG difasilitasi dengan pemberian harga yang lebih murah bila dibandingkan dengan bahan bakar cair (bensin dan solar), peralatan konversi yang dibuat lokal dan infrastruktur distribusi CNG yang terus berkembang. Sejalan dengan semakin meningkatnya harga minyak dan kesadaran lingkungan, CNG saat ini mulai digunakan juga untuk kendaraan penumpang dan truk barang berdaya ringan hingga menengah.
Sesungguhnya di Indonesia, CNG bukanlah barang baru. Pencanangan untuk menggunakan CNG yang harganya lebih murah dan lebih bersih lingkungan daripada bahan bakar minyak (BBM) sudah dilakukan sejak tahun 1986. Pada saat itu ditetapkan bahwa 20 persen dari armada taksi harus memakai CNG. Namun, karena pada saat itu harga BBM masih dianggap terjangkau dan stasiun pengisian BBM terdapat di mana-mana, maka minat untuk menggunakannya tidak sempat membesar.
Saat ini di Jakarta hanya terdapat 14 Stasiun Pengisi Bahan Bakar Gas (SPBG), tetapi yang berfungsi tak lebih dari enam SPBG. Untuk mendorong penggunaan CNG, Gubernur DKI Jakarta Sutiyoso mengharuskan bus TransJakarta yang melayani rute 2, rute 3, dan rute selanjutnya untuk menggunakan CNG.
CNG dibandingkan dengan LNG dan LPG CNG kadang-kadang dianggap sama dengan LNG. Walaupun keduanya sama-sama gas alam, perbedaan utamanya adalah CNG adalah gas terkompresi sedangkan LNG adalah gas dalam bentuk cair. CNG secara ekonomis lebih murah dalam produksi dan penyimpanan dibandingkan LNG yang membutuhkan pendinginan dan tangki kriogenik yang mahal. Akan tetapi CNG membutuhkan tempat penyimpanan yang lebih besar untuk sejumlah massa gas alam yang sama serta perlu tekanan yang sangat tinggi. Oleh karena itu pemasaran CNG lebih ekonomis untuk lokasi-lokasi yang dekat dengan sumber gas alam.
CNG juga perlu dibedakan dari LPG, yang merupakan campuran terkompresi dari propana (C3H8) dan butana (C4H10).
Dengan sedikit tulisan ini seharusnya kita menyadari bahwa persediaan itu semakin lama semakin habis dan hal tersebut membutuhkan waktu jutaan tahun untuk mendapatkan sumber energi tersebut. Gunakanlah energi dari alam semaksimal dan se efisien mungkin karena, mahalnya semua yang akan kita terima akan berdampak pada anak cucu kita kemudian hari.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: